Maximum Likelihood Estimation for Matrix Normal Models via Quiver Representations

نویسندگان

چکیده

We study the log-likelihood function and maximum likelihood estimate (MLE) for matrix normal model both real complex models. describe exact number of samples needed to achieve (almost surely) three conditions, namely a bounded function, existence MLEs, uniqueness MLEs. As consequence, we observe that almost sure boundedness guarantees an MLE, thereby proving conjecture Drton, Kuriki, Hoff [Existence Uniqueness Kronecker Covariance preprint, arXiv:2003.06024, 2020]. The main tools use are from theory quiver representations, in particular, results Kac, King, Schofield on canonical decomposition stability.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

A comparison of algorithms for maximum likelihood estimation of Spatial GLM models

In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...

متن کامل

Maximum-likelihood estimation for hidden Markov models

Hidden Markov models assume a sequence of random variables to be conditionally independent given a sequence of state variables which forms a Markov chain. Maximum-likelihood estimation for these models can be performed using the EM algorithm. In this paper the consistency of a sequence of maximum-likelihood estimators is proved. Also, the conclusion of the Shannon-McMillan-Breiman theorem on en...

متن کامل

Maximum-Likelihood Circle-Parameter Estimation via Convolution

In this paper, we present an interpretation of the Maximum Likelihood Estimator (MLE) and the Delogne-Kåsa Estimator (DKE) for circle-parameter estimation via convolution. Under a certain model for theoretical images, this convolution is an exact description of the MLE. We use our convolution based MLE approach to find good starting estimates for the parameters of a circle, that is, the centre ...

متن کامل

Cluster Mutation via Quiver Representations

Matrix mutation appears in the definition of cluster algebras of Fomin and Zelevinsky. We give a representation theoretic interpretation of matrix mutation, using tilting theory in cluster categories of hereditary algebras. Using this, we obtain a representation theoretic interpretation of cluster mutation in case of acyclic cluster algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Applied Algebra and Geometry

سال: 2021

ISSN: ['2470-6566']

DOI: https://doi.org/10.1137/20m1369348